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A study is presented using photogrammetry to measure the biaxial strain in an inflated
cylinder. Two cylinders constructed from polyethylene and each approximately 222 mm in
diameter and 930 mm in length were studied. The first had a 0.038 mm wall thickness while
the second had a 0.02 mm wall thickness. The cylinders were inflated to a maximum
pressure of 1379 Pa. The strain was determined from data collected from 60 retro-reflective
targets arranged in a 12 x 5 grid. The uncertainty of the measurement system was
determined to be 0.08, 0.04 and 0.06 mm in the X, y, and z directions respectively. The hoop
and meridional strains determined from displacement data were compared to  values
obtained from a finite element analysis of a related proxy problem. The predicted hoop
strains showed good agreement over the entire range of pressures while the meridional
strains showed good agreement at the lower pressures.

Nomenclature
E = Modulus of Elasticity
Er = Total Energy
E, = Potential Energy
L = Length of cylinder
P = Pressure
r = Cylinder Radius
S = Membrane surface configuration
t = Cylinder wall thickness
W' = Relaxed film strain energy
&y = Hoop Strain
Enmr = Meridonal Strain
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£ = First Principal Strain

£ = Second Principal Strain

Oy = Hoop stress

Oy = Meridonal Stress

o, = First Principal stress

o, = Second Principal Stress

u; = First Principal Stress Resultant
u, = Second Principal Stress Resultant
v = Poisson’s ratio

0 = Angular position on cylinder

I. Introduction

he optimum design and operation of any structure requires appropriate knowledge of the properties of its
material components. For the NASA scientific balloons program, the mechanical properties of the thin film
material composing the gaseous envelope have primarily been studied uniaxially over the two primary axes, such as
with traditional tensile analysis in the film machined and transverse directions. However, for thorough
understanding of structural behavior, a minimally intrusive study of candidate materials in a loading environment
more similar to flight conditions provides more useful information. The material behavior in a multi-axial loading
situation is somewhat illuminated by the traditional measurement of Poisson’s ratios, wherein the change in
dimension of a specimen in a direction perpendicular to an applied load is compared to the change in dimension
along the loading axis. However, balloons are loaded biaxially, and all three dimensions of the envelope film may
change in response to this load. With the recent application of photogrammetry to study the static and dynamic
behavior of Gossamer space structures such as solar shields and inflatable booms, the NASA Balloons Program
Office sees an opportunity to study balloon model structures, and potentially even full scale balloons in flight, for
their dynamic response to applied load in the form of internal pressurization. By characterizing a number of
representative model structures, and then comparing the change in response of these models when constructed of
different materials, we intend to demonstrate the capacity to investigate materials in three dimensional loading
environments.
This paper presents a combined experimental and numerical study investigating the stress in an inflated
cylinder. Stress and strain values are obtained using photogrammetry. A finite element analysis of an inflated
cylinder is carried out and the numerical results are compared to the experimental data.

II. Balloon Biaxial Strain Measurement History

The principle challenge in measuring strain and other dynamic quantities in scientific balloons, their related
model structures, and other structures employing thin polymer films to bear load, is to make accurate measurements
without the instrument significantly affecting the local or global state of the structure or material. While non-contact
methods such as photogrammetry would be the ideal means, other approaches have been used to advance the art and
science of gossamer craft over the decades. The literature of scientific ballooning technology was surveyed to
provide context to our current work, and our goals with this work are in close alignment with those of the works
discussed below, reflecting a continuing need to develop the technology.

In 1965, Stautgaitis and Kobren' of NASA-Goddard reported a collaborative effort with the U.S. Army
Map Service to measure the skin strain of a full-scale Echo II passive communications reflector balloon during
inflation tests in a hangar. Their first tests (June 1963) used a painted-on grid pattern and suffered from “grid line
width variability” and “inadequate pattern size.” Changing to a precision dot pattern improved the data quality, but
indicated the need for improved lighting conditions due to both washed-out and dark sections. Two RC-8 Wild
aerial cameras modified to a fixed focal distance (12.9 ft.) were the photographic instruments. They reported
reasonable correlation between measurements and calculated predictions given the limitations of the experimental
technique and the assumptions pertaining to material properties used in the analysis.

Following the Echo II work and through about 1995, the measurement of strain in balloons and related
model structures shifted away from photogrammetric methods, although significant progress was made in biaxial
stress-strain experimental techniques. In experiments using pressurized polyethylene cylinders to study material
properties, Alexander® determined strain by measuring the changing location of benchmarks using vernier calipers.
At about the same time, Kawada and coworkers were developing a soft strain gauge3 to overcome incompatibilities
between common strain gauges and balloon films. The soft gauges comprised a thin Nickel-Copper wire mounted on
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a polyethylene film base, and were used on small model balloons in the laboratory at room and reduced
temperatures, and in flight on a 6-meter polyethylene balloon. The Kawada group then developed a strain slide
gauge® based on a resistor coil for use on balloon flights. Although these gauges were relatively heavy (tens of
grams), their response was stable over the wide range of temperatures experienced by scientific balloons in flight.

In the early 1980’s, Rand’ developed a strain gauge comprising four foil strain gauges bonded to a flexible ring
and connected in a Wheatstone bridge circuit. They were demonstrated in the laboratory to measure model balloon
strains, to collect uniaxial creep data, and to measure the coefficient of thermal expansion, and were then flown
successfully on a 28,320 m’ balloon.® Rand gauges were also used by Simpson to study model balloons in a hangar,’
leading to the first comparison of in-flight (500 m® balloon) strain measurements to structure predictions from finite
element analysis.® Martone applied these gauges to the study of material properties using inflated cylinders in the
laboratory,” and, because the small curvature radius of the lab-scale cylinders introduced a non-negligible strain
measurement offset, determined the correction factor using flexible scales. The flexible scales were described by
Said'*"" as transparency sheets with a printed one-millimeter scale, with strain indicated by scale movement versus a
drawn or affixed benchmark.

In the mid-1990’s, Rand and Grant (Fairbrother) developed an optical technique for measuring biaxial film
strains using an applied random speckle pattern and a CCD camera with digital image correlation software'>. The
speckle pattern was applied to a small section of an inflated cylinder. The area covered approximately 150 x 150
pixels. The technique was used with pressurized cylinder experiments to develop a nonlinear viscoelastic
constitutive representation for the material.”

Photogrammetry is an optical measurement technique that has been used to characterize the static shape of
Gossamer structures.'*'® By triangulating from known camera positions to the location of identical targets on a
series of photographs, a three dimensional model of an imaged surface can be obtained. The imaged targets are
usually circular and are either projected or physically attached to the surface of the structure. Projected targets have
the advantage of not altering the surface of the structure, but the structure can move independently of the projected
targets. Fixed targets add mass and local stiffness to the structure, but they move with the structure so changes in the
relative position of the targets can be used to determine the strain. The disadvantages of additional mass and
stiffness can be minimized by the proper selection of targets.

III. Experimental Study

Analytical Development
An inflated cylinder is analyzed as a thin walled pressure vessel. If the radius, pressure and wall thickness is
known the hoop and meridional stress is determined from:

0, = ()
Pr
Oy =— 2
My @
If the ends of the cylinder are constrained the corresponding strains are defined as:
Ar 1
€y =_=_(GH _VOM) (3)
r E
AL 1
€y =T=E(GM _VGH) (4)

Substituting Eqns (1) and (2) into Eqns (3) and (4) gives expressions for the strains in terms of the applied pressure,
cylinder radius and material thickness.

Ey =E(2—V) (5)
Pr
Ey =E(1—2V) (6)
3
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The use of a linear, isotropic material constitutive relation is at least a reasonable starting point for our work at
low stresses, small deformations, short durations, and steady temperature. Because properties of the polyethylene
film were unknown to us for the conditions under which the photogrammetry data was collected, we used estimates
for the Poisson ratio and Youngs modulus and assumed the thicknesseses were known. To determine strain, the
measurement system must monitor pressure and cylinder radius. From Eqn (4) the meridional strains may also be
obtained from a change in spacing of measured points along the cylinder length.

Test set-up

The test articles (2) for this study were polyethylene cylinders. Material was heat seamed to form a cylinder
approximately 222.0 mm in diameter. Seaming was done by hand and there was some variation in diameter along
the length of the cylinder. The polyethylene used to fabricate the first cylinder was 0.038 mm (1.5 mil), while 0.02
mm (0.8 mil) thick material was used for the second. Sixty retro-reflective targets were fixed in a 12 x 5 grid pattern
near the center of the cylinder. The targets were approximately 3 mm in diameter and target spacing was
approximately 25 mm x 38 mm.

The cylinder was attached to an aluminum test frame shown in Fig. 1. Aluminum end-caps were supported by a
6.35 mm thick x 50 mm wide aluminum bar. The end-caps were spaced 930.3 mm (36.625 in) apart. Each end-cap
had a port with barb fitting that was used either for inflation or the attachment of a pressure transducer. The end-
caps had a thin gasket around the edge where it contacted the polyethylene cylinder. The balloon was fastened to
the end-caps using hose clamps. The cylinders were inflated using compressed air, and the inflation rate was
controlled manually using a pressure-regulating valve. The cylinders were inflated to a maximum pressure of 1379
Pa (0.2 psi) above atmospheric pressure.

As the cylinder was inflated the shape was recorded using a four-camera photogrammetry system. The cameras
used had 5.0 megapixel (2560 x 1920) resolution. The cylinder was inflated slowly and maintained at a desired
pressure while images were captured. The inflation rate was slow and the change in pressure between measurements
small therefore, it was assumed that the cylinder did not undergo viscoelasic relaxation. The cameras were set for a
1/640 second exposure. The camera flash intensity was muted using several layers of masking tape. This provided
images with excellent contrast. A typical image set is shown in Fig. 2. Image sets were processed using
commercially available photogrammetry software. Image scale and axes were set using scale tape. The tape can be
seen in Fig. 1 running the length of the test rig and also vertically below the balloon. The tape had 3 mm dia. retro-
reflective targets spaced 25.4 mm apart. The scale tape manufacturer claims target spacing accuracy of +/- 0.025
mm. Because of the manufacturing accuracy of the scale tape it served not only as a tool in setting image scale but
was also useful in evaluating the accuracy of the photogrammetry data.

Experimental Results

Ten data sets were collected, four using the cylinder with the 0.02 mm wall thickness and six with the 0.038mm
wall thickness, with inflation pressures ranging from 137.9 Pa to 1379 Pa. Typical data for the targets located in the
12 x 5 grid are shown in Fig. 3. To determine the radius of the cylinder, regression was used to find the best-fit
circle for the data points from each column of the grid. Due to variations in the seaming of the cylinder, the radius
varied along the length of the cylinder. For the 0.02 mm wall thickness (0.8 mil), the radius varied as much as 1 mm
at the higher pressures. Cylinders manufactured from the 0.038 mm (1.5 mil) thick material showed a variation in
radius of approximately 0.3 mm. Table 1 gives the maximum, minimum and average radius for both cylinders for
each test case. A single value for the cylinder radius was determined by averaging the data from the twelve sections.
Figure 4a and 4b show the relationship between pressure and average radius for the two cylinders. Although there
was variation in the radius of the cylinder along the length, the graphs show excellent correlation between the
average radius and pressure.
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Table 1. Variation in inflated cylinder radius.

0.02 mm wall thickness 0.038 mm wall thickness
Pressure (Pa) 344.7 448.2 999.7 1379 137.9 206.8 448.2 654.0 1069 1379
Max. radius 112.7 1134 115.6 117.1 112.8 112.8 113.2 113.6 114.1 114.8
(mm)
Min. radius 110.1 110.7 1134 115.8 111.8 112.2 112.5 113.1 113.7 114.4
(mm)
Average radius 111.3 112.0 114.5 116.3 112.3 112.4 112.8 113.3 113.9 114.6
(mm)

Accuracy of Photogrammetry System

To evaluate the effectiveness of using photogrammetry to measure strain in balloon structures, the accuracy of
the technique must be understood. To determine the accuracy of the technique we will consider the marking
residual and the measured distance between targets of known spacing. The marking residual is the difference
between where a mark was found on an image and where the photogrammetry software analytically determines the
point should be. By looking at the largest marking residual error for each point, we can determine the quality of the
data. The images used for this study covered approximately 740 x 520 mm of the balloon and frame. The 5.0
megapixel cameras used capture an image of 2560 x 1920 pixels. Therefore, the spatial resolution of the image was
approximately 0.3 mm/pixel. The photogrammetry software uses a least squares method to determine the center of
the circular targets in each image, which allows the center of the targets to be found to an accuracy of less than one
pixel. An excellent description of the steps used to process multiple images are described in reference [15]. Table 2
provides data on the maximum, minimum, and average marking residual for each test case. Figure 5 is a histogram
that shows the distribution for the marking residuals for all points located on the cylinder surface that were used for
the test cases. The data in Table 2 and Fig. 6 indicate that the marking residuals were consistent across all the data
sets. In all cases the average marking residual is less than 0.25 pixel and the largest marking residual of 0.46 pixels
was seen for the 0.038 mm thick cylinder at a pressure of 137.9 Pa. The histogram shows that the distribution of the
marking residuals is described by a normal distribution, which indicates that the marking errors are random.

Table 2. Data for marking residual for targets on cylinder surface for inflated cases.

Cylinder Wall 0.02 mm 0.038 mm

Thickness

Pressure (pa) 344.7 448.2 999.7 1379 137.9 206.8 448.2 654.0 1069 1379
Maximum marking 0.3788  0.3412  0.3363 0.3637 0.4573 0.4315 0.4623 0.4173 0.4302 0.4412
residual (pixel)

Minimum marking 0.0264  0.0454  0.0066 0.0144 0.0313 0.0308 0.0495 0.0451 0.0379 0.0592
residual (pixel)

Average marking 0.1632  0.1554  0.1557 0.1649 0.2119 0.1620 0.1655 0.1583 0.1633 0.1918
residual (pixel)

Two St. Dev 0.1435 0.1276 ~ 0.1313 0.1450 0.1958 0.1473 0.1633 0.1368 0.1356 0.1841
(95% Contidence)

To evaluate how the marking residual affected the determination of the three-dimensional coordinates, we
evaluated the points along the scale tape for the data set with the largest marking residual (0.038 mm thick balloon at
a Pressure of 137.9 Pa). As discussed previously, the scale tape used has 3 mm diameter retro-reflective targets
spaced every 25.4000 +/- 0.0254 mm. Table 3 provides data on the maximum, minimum and average marking
residual for the 23 targets on the scale tape and. Fig. 6 shows the corresponding histogram for the marking errors.
Again the distribution of the marking residual indicates that the marking errors are random. Because the largest
marking residual and average marking residual were both larger than those found for targets on the cylinder surface,
this data is ideal for evaluating the accuracy of the measurements.
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Table 3. Data for marking residual for fixed targets
for 0.038 mm thick cylinder, P=137.9 Pa case.

Maximum marking 0.8097
residual (pixel)

Minimum marking 0.0707
residual (pixel)

Average marking 0.2646
residual (pixel)

Two St. Dev 0.3022
(95% Contidence)

Table 4 gives the measured X, y, and z coordinates of the centers of the 23 targets as well as the x, y, and z,
spacing between targets. The last column in the Table gives the distance between target centers calculated using,

d=yx-x}+@-p,f+G-z,) . 0

Because the scale tape was chosen as the x axis for orienting the images and camera positions, the y and z
coordinates should be very close to zero. This is indeed the case and thus the values calculated using Eqn (7) are
similar to the values for the spacing of the targets in the x direction. The value of 25.3770 mm for the spacing in the
x direction is within the expected range given the manufacturing tolerance of the scale tape. The measurement
accuracy within a 95% confidence is less than 0.08 mm. Over the 740 mm of the cylinder surface captured in the
image (targeted area plus additional non-targeted area) this corresponds to an accuracy of 1 part in 10,000
(1:10,000). The uncertainty of the measurement in the x direction of 0.079 mm indicates that using a gage length of
25.4 mm to determine strain may be insufficient to determine meridonal strain. The resulting uncertainty of
0.003110 mm/mm may be unacceptable.

Table 4. Spacing between adjacent fixed targets.

x-coord. (mm) y-coord. (mm) z-coord (mm) X spacing y spacing Z spacing d (mm)
(mm) (mm) (mm)

-279.123 -0.00758 0.234586
-253.794 -0.01132 0.152812 25.32885 -0.00374 -0.08177 25.32898
-228.446 -0.0439 0.179059 25.34772 -0.03258 0.026247 25.34775
-203.016 -0.04649 0.158133 25.43035 -0.00259 -0.02093 25.43036
-177.666 -0.07425 0.100752 25.34955 -0.02776 -0.05738 25.34963
-152.297 -0.07082 0.085768 25.36966 0.003429 -0.01498 25.36966
-126.966 -0.05064 0.088395 25.33041 0.020184 0.002627 25.33041
-101.535 -0.03929 0.054213 25.43161 0.011349 -0.03418 25.43164
-76.178 -0.0035 0.045788 25.35662 0.035783 -0.00842 25.35664
-50.8176 0.012692 0.048272 25.36036 0.016195 0.002484 25.36037
-25.4229 0.004529 0.037906 25.39465 -0.00816 -0.01037 25.39465
0 0 0 25.42295 -0.00453 -0.03791 25.42298
25.38643 0.010383 0.011575 25.38643 0.010383 0.011575 25.38643
50.71049 -0.01159 0.008874 25.32406 -0.02197 -0.0027 25.32407
76.13362 -0.04169 -0.03024 25.42313 -0.0301 -0.03912 25.42318
101.5733 -0.08187 -0.02319 25.4397 -0.04019 0.00705 25.43973
126.9694 -0.10374 0.008654 25.39608 -0.02187 0.031848 25.39611
152.2978 -0.13332 -0.00744 25.32836 -0.02957 -0.0161 25.32838
177.7173 -0.18773 0.001159 25.41955 -0.05442 0.008601 25.41961
203.1269 -0.21776 0.006099 25.40957 -0.03003 0.00494 25.40959
228.4839 -0.21886 0.006119 25.35699 -0.0011 2E-05 25.35699
253.8202 -0.21942 0.034745 25.33634 -0.00056 0.028626 25.33635
279.1703 -0.17883 0.085867 25.35011 0.040589 0.051122 25.3502
Average 25.37696 -0.00778 -0.00676 25.37699
2 St. Dev 0.078592 0.049132 0.061176 0.078583

(95% confidence)

The hoop and meridonal strains can be calculated based on a change in radius. In terms of minimizing
uncertainty, this is the preferable method for determining the strain. The unstrained cylinder radius is approximately
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111 mm. From Table 4 the accuracy of the measurements in the z direction were 0.061 mm. This gives an
uncertainty in determining the change in radius of 0.000550 mm/mm.

IV.  Analysis
Numerical Model

A mathematical model that has been used for the analysis of large scientific balloons was adapted to the cylinder
problem and used to predict the hoop and length-wise strains. Because of the high-resolution and non-intrusive
nature of photogrammetry, the cylinder inflation test provides an excellent benchmark for evaluating a mathematical
model for a thin membrane structure. Although the cylinder is a relatively simple geometry, having a good
correlation between predicted and measured strains in a well-controlled setting will give confidence when the same
model is applied to more complicated scenarios (e.g. spool shapes) which cannot be reproduced in a laboratory
setting at the appropriate scale. The details of the mathematical model presented here are given in refs. [19] & [20].

Large compliant structures such as high altitude scientific balloons are characterized by large deformations, but
relatively small strains, typically on the order of one-percent. In the balloon model, a finite element method with
piecewise linear elements is used to discretize the continuum problem of a pressurized envelope. The surface of the
membrane is triangulated; an isotropic film is assumed and the elastic deformation is modeled assuming a linear
constitutive relation and constant strain triangles (see ref. [19] for details). The equilibrium configuration of the
pressurized membrane is the one that minimizes the potential energy of the system.

While it would be difficult to model the precise behavior of the membrane in the vicinity of the end-caps, for the
purpose of the benchmark tests we are interested in the behavior of the membrane away from the end-caps. For this
reason, we solve a proxy problem. We assume the membrane consists of three parts: a cylinder of diameter
approximately 222 mm and length 914 mm and two disks that cap the ends of the cylinder. For simplicity, we
assume the end-caps and cylinder are made of the same material. A typical configuration of the membrane in the
proxy problem will be denoted by S. It’s initial state is denoted by S° where,

s*=p’uc’uDpy ®)

CO={(x,y,z}(y—y0)z+(z—zo)z=r2,x1 <x<ux, };
Dlo={(x,y,z)(y—y0)2+(z—zo)z=r2,x=x1 }3 )
D;={(x,y,z)(y—y0)z+(z—zo)2=r2,x=x2 }

In cylindrical coordinates, we let y — y, =rcosf and z-z, =rsin@ for -7 <0 <7 .

While the model in Ref. 19 includes straining of load tendons and contributions due to film and tendon weight, in
our proxy problem there are no tendons and we ignore weight. The total energy of S is

E ()= E,(S)+57,,(5) (10)

where Ep is the potential energy due to a constant pressure P = py, i.e.,

1
E,(5)= -fgpoyj-ndS, (11)

S

n is the outward unit normal to S; g, is the strain energy of the film, i.e.,

S un ()= [Wd4, (12)
Q

where W; is the relaxed film strain energy density and _ is the corresponding reference configuration. Away from

the end caps there is little wrinkling, and for a triangle T that is in a taut state, the relaxed strain energy density is the
same as the standard membrane strain energy density (i.e., W (S) = W{S)) and
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* tE
W (T)=m@3 vel v ovee, ) (13)

where €, and ¢, are the principal strains. The principal strains are related to the principal stress resultants by,

Et (€ +ve
(ul)= 2(1 2). (14)
w,) l-v\g,+ve
To compute an equilibrium configuration of a pressurized cylinder, we solve the following variational problem:

%nET(S) (15)

where u is the set of all feasible configurations satisfying the boundary conditions.

. . 1 .
We computed solutions for one-half of a cylinder, _Eﬂ <0 <%n, and for one-tenth of a cylinder,

1 1
-—r <0< %n , and found there was little difference in the averaged hoop and meridional strains. So for the

20
calculations that we presented here, we consider a slice of S that is only one-tenth of the circumference of the
cylinder.
In our model we compute the principal strains for each facet in our discretization of S. Ignoring those triangles
that make up the end-caps, we compute the average of the principle strains, €,, hoop strain, and ¢, , meridian strain.

The average of the ¢, ’s is denoted by &],. The average of the ¢, ’s is denoted by ¢, .

Estimating Membrane Strains from Photogrammetry Data

The length-wise (meridonal) strains were computed directly from the data by determining the change in spacing
between adjacent targets as the cylinder is inflated. Let G;,y;,zg ) fori=1,2,,...,12,andj=1,....,5.
Let Lj; = xOHLj - xoij, If (Yf; s y,f. s z/’; ) are the location of the targets for Pressure Epoch k, then the length-wise strains

are given by

X
L = 1,2, = 1,2,..5. (16)
i.J
These values are then averaged to yield a single length-wise strain, &,
The hoop strains are estimated by determining the change in radius of the cylinder during inflation. For Epoch k,
we find the best circle, in the least square’s sense, that fits each of the bands, i=1,...., n),, We find (ﬁCJ,EC’,) and

r}that minimizes the sum of the squares of the residuals, i.e.,

S0, 2) +6,-2) -

The radii, 7;, are averaged to yield a single radius, F(k), for the entire cylinder for Epoch k. If r, is the radius

2

(17

calculated in this fashion for the initial state &=0, the hoop strain is given by

207 ®) — 2, 7O
&y = 2= = (18)
27r, 7,
In practice, the radius at a zero pressure is difficult to obtain so we found it best to use one of the early epochs to
define 7,
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The material properties were not measured and there is considerable variation in the properties in the published
literature. To evaluate the numerical algorithm the material properties were determined from the experimental data
as described above. For the geometry defined by the experiment, using Eqns (3) and (4), the hoop stress is twice the
meridonal stress. This gives a simple way of corroborating the predictions in the model. Once we estimate the hoop
strains using the photogrammetry data, these values can be substituted into Eqn (14), because (g4,&,)=(gy,ey), and
solve the resulting system for E and v for each Epoch k using the analytical solution. The primary focus of this
study is to evaluate the measurement system.

Comparison of Experimental and Theoretical Results

For each Epoch we solved the problem described in Eqn (5) and determined the principal strains for each facet
within the target grid. In Fig. 7, the strains determined from the experimental data are plotted for the cylinder with
the 0.020 mm wall thickness at Py=999.7. Similar plots were obtained for other pressure Epochs. For this case
using Eqns (3) and (4) we determine that the hoop stress resultant should be 114.27 N/m and the meridonal stress
resultant should be 57.13 N/m. From the numerical results, we determined that the average hoop and meridonal
stress resultants were 113 N/m and 59 N/m, respectively. In Table 5, for the 0.02 mm wall thickness cylinder we
compare the average principal strains that were determined from the experimental data with the strains predicted by
the model. Table 6 compares similar data for the cylinder manufactured from 0.038mm thick material. As discussed
previously, the material properties were estimated using the experimental data and Eqn (14). This allowed us to
evaluate the performance of the algorithm without accounting for the uncertainty or anisotropy in the material
properties. Using this approach the maximum relative error in the hoop strains is 3.6%. The length-wise (meridonal)
strain results for the lowest pressure epochs were comparable. However, the relative error jumps dramatically for the
two highest pressure epochs.

Table 5. Comparison of measured and predicted strains for cylinder with 0.020 mm wall thickness.

Measured Predicted
Epoch  Pressure  r* & Em E(Po)  v(P,) e’ e’ e _gt e _g”| bm Pro)_g*
(Pa) (mm) (Mpa) H M H H M M (N/m) o (k) H
£H E"/I Pur
0 27.6 113.18 N/A N/A N/A N/A 0.00030 -0.00009  N/A N/A N/A N/A
1 344.7 113.60 0.00376 -0.00111 3344 0.69 0.00376 -0.00110  0.0011 0.0126 393 0.0047
2 448.2 113.77 0.00521 -0.00164  311.5 0.70 0.00520 -0.00160  0.0031 0.0255 51.2 0.0033
3 999.7 114.78 0.01419 -0.00269  272.4 0.63 0.01390 -0.00236  0.0207 0.1238 114.0 0.0067
4 1379 115.81 0.02322 -0.00320  237.4 0.60 0.02239 -0.00237  0.0359 0.2585 157.1 0.0159
Table 6. Comparison of measured and predicted strains for cylinder with 0.038mm wall thickness.
Measured Predicted
(k) >
Epoch g;;sure me) & em Fl\(/[PUz)l) v(Po) | gl £y £, —€ £,y —Ey H;I / P gl
p £H E"/I ( m) Pur(k)
0 27.58 112.64 N/A N/A N/A N/A 0.00011 -0.00005 N/A N/A N/A N/A
1 448.2 112.80 0.00146 -0.00132  466.7 0.97 0.00146 -0.00132  0.0006 0.0007 51.1 0.0099
2 655.0 113.25 0.00548 -0.00173  229.8 0.70 0.00549 -0.00170  0.0018 0.0196 74.8 0.0079
3 1069 113.90 0.01125 -0.00215  194.2 0.63 0.01114 0.00195 0.0100 0.0924 121.9 0.0012
4 1379 114.56 0.01711 -0.00300  167.0 0.62 0.01675 -0.00254  0.0214 0.1541 157.1 0.0052
To better understand the uncertainty in the measurement and it’s effect on strain we recalculated the strain using
k
i3, xi.j . .
,i=3,6,9=12,..5 (19)

i+3,]

rather than Eqn (16). Using Eqn (19) increased the gauge length by three times. Dividing the measurement
uncertainty by the gauge length gave and uncertainty in the merdional strain of 0.000919. Increasing the gauge
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length lowers the uncertainty in the meridional strain measurement by an order of magnitude. Table 7 compares
strain calculations based on Eqn (16) and those based on Eqn (19) for the cylinder with 0.02 mm wall thickness.

Table 7. Comparison between strains calculated using gauge lengths of 25.4 and 76.2mm.

Epoch L=254 L=76.2 Agy

1 -0.001115 -0.001118 0.000003
2 -0.001647 -0.001636 0.000011
3 -0.002700 -0.002662 0.000038
4 -0.003207 -0.003195 0.000012

V. Discussion

Measuring strain in scientific balloons or other structures that employ thin films is a difficult task dictating the
use of non-contact measurement techniques. Currently, the two leading technologies, both based on digital imaging,
are random speckle techniques and photogrammetry using circular targets. In ref [13] the authors demonstrate the
use of a single CCD imager and measure the relative displacement of speckles on an inflated cylinder. It is also
possible to use multiple imagers rather than a single imager. Speckle techniques using multiple imagers can be
thought of as very close range photogrammetry. Speckle techniques provide strain measurements over a small area,
while photogrammetry is suitable for assessing the global or average strain. For a relatively simple geometry like
the cylinder, the two methods should yield similar results, although the uncertainty in the measurement will be lower
for the speckle technique as the targeted area, although small, will fill the camera field of view. The drawback to the
speckle technique is that it requires the membrane to be coated with a layer of white paint or talc followed by a
“speckling” or thin layer of black paint. These coatings are easily damaged and are not suited for folding and
inflation type testing, or for use on a flight experiment. If photogrammetry is to be used to measure strain, targets
must also be attached to the balloon surface. The retro-reflective targets used for this study were 3mm in diameter
and weighed approximately 0.004 g each. The 60 targets used for the study added less than 0.25 g to the mass of the
cylinder. Fixed retro-reflective targets can be used for folding and inflation testing and are suitable for use during a
flight experiment.

Because the accuracy of photogrammetry data depends on intersecting rays of light, the measurement uncertainty
is project specific. The accuracy of photogrammetry data is dependent on the number of cameras used, camera
locations and spacing, camera resolution, lens calibration, lighting, type of target, and proper scaling of the image.
The data shown in Tables 5 and 6 indicate a reasonable agreement between the analysis and the experiment. Table 7
indicates that although the gauge length is tripled the strain value remains unchanged. The accuracy was determined
from adjacent targets on a scale tape whose target spacing was 25.4 +/- 0.0254 mm. The measured value was 25.377
+/- 0.08mm, but the actual measurement uncertainty is likely less than 0.08mm because 25.377 lies within the
manufacturing uncertainty. Although an overall accuracy of 1:10,000 is excellent this value doesn’t provide insight
into how accurately the data measures relative motions of targets. This project demonstrates the need for targets of
known spacing to be distributed throughout the image.

VI. Conclusion

A study of biaxial strain in an inflated cylinder has been presented. Photogrammetry using fixed retro-reflective
targets was used as the measurement technique. The data showed a reasonable agreement with the numerical
analysis. The hoop strains agreed with the experimental data within 3.6% while the meridonals strains agreed with
the analysis at the lower pressure epochs. Overall the accuracy of the photogrammetry system was 1:10,000. This
produced and uncertainty of 0.08 mm for measurements along the length of the cylinder (x direction) and 0.06 mm
in the z direction.
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(b)Side View
Figure 1. Test set-up.

(a)Front View

Figure 2. Photogrammetry image set.
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Figure 3. Typical data for targeted area of cylinder.
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Figure 5. Histogram of marking residuals for all points on cylinder surface.
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Figure 6. Histogram of marking residuals for fixed target on test frame.
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Figure 7. Predicted strains from FEA of cylinder proxy problem with 0.02 mm wall thickness.
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